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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 2527

A VELOCITY-CORRECTION FORMULA FOR THE CALCULATION OF
TRANSONIC MACH NUMBER DISTRIBUTIONS OVER
DIAMOND-SHAPED AIRFOILS

By H. Reese Ivey and Keith C. Harder
SUMMARY

A velocity-correction formula is proposed for the purpose of
calculating, from the known Mach number distribution for a diamond-
shaped airfoil at a stream Mach number of 1.0, Mach number distributions
on the same airfoil at speeds from a Mach number of about 0.8 to shock-
attachment Mach number. The time required to calculate these additional
Mach number distributions is small in comparison with the time required
by rigorous methods. The accuracy of the results for stream Mach numbers
near 1.0 is of the same order as the accuracy of the known Mach number
distribution. Moreover, the results tend to become exact as the stream
Mach number is increased toward that for shock attachment. An expression
for the rate of change of local Mach number with stream Mach number is
derived and an explicit equation for the drag coefficient as a function
of stream Mach number and thickness ratio 1s given.

INTRODUCTION

The pressure distribution for a diamond-shaped airfoil at a stream
Mach number of 1.0 has been calculated by Guderley and Yoshihara
(reference 1). Calculations for a similar airfoil at four speeds between
Mach number 1.0 and the shock-attachment Mach number have been performed
by Vincenti and Wagoner (reference 2). According to reference 2,
similar calculations have been made by Cole at slightly subsonic speeds.
These rigorous results combined with reliasble experimental results
provide sufficient information for checking the accuracy of an approximate
velocity-correction formula proposed for calculating Mach number distri-
butions on a dismond-shaped airfoil. The concepts involved should
facilitate the calculations for other shapes.

The Justification for the proposed velocity-correction formula is
based upon its good agreement with existing rigorous calculations.
Moreover, it is in accord with the general transonic similarity rule,
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and with the special form of that rule for a stream Mach number of 1.0.
Also, it agrees with Guderley's result that the local Mach numbers are
constant for small departures of the stream Mach number from 1.0.

The present paper gives the derivation of the method of calculation
and its application for the determination of the Mach number distributions
over a l0-percent-thick diamond-shaped airfoil in the Mach number range
0.80 < M, £ 1.30. The results are compared with the earlier results
of Vincenti and Wagoner. A brief discussion is given of the movement
of the shock wave along the airfoil surface as the stream Mach number
is decreased below 1.0.

ANALYSTS AND DISCUSSION

The velocity-correction formula to be presented for diamond-shaped
airfoils is based upon the combination of two heretofore unrelated
concepts. One concept is obtained from the special form of the transonic
similarity rule (reference 3) when the free stream is sonic and the
other from an examination of the transonic approximation for Prandtl-
Meyer flow.

Trangonic similarity rule for sonic stream.- The form of the transonic
similarity rule for a sonic stream is derived in the appendix and the -
result obtained is

M2 -1 = 62/3C(x) (1)

where M 1s the local Mach number, C(x) is a function depending upon
the body shape, and ® 1is a parameter (such as the airfoil thickness
ratio or the angle of flow deflection for Prandtl-Meyer flow) used to
differentiate bodies of the same family. The concept to be obtained
from the similarity rule is the role played by C(x). For the purpose
of this paper, it is sufficient to consider the flow past the nose of

a wedge and the Prandtl-Meyer expansion around a convex corner. The
flow deflection & 1is taken as positive for the wedge (compression) and
negative for the Prandtl-Meyer corner (expansion). The stream is sonic.
Equation (1) may be applied to both of these flows but C(x) will be
different for the two cases. For Prandtl-Meyer flow C(x) is a constant
and for the flow past the wedge C(x) corresponds to the Mach number
distribution given in reference 1. Thus, C(x) determines the shape of
the Mach number distribution along the surface. An illustration of
equation (1) is presented in figure 1 to show the role of c(x). It
should be noted (fig. 1) that all curves originate at the point M =1,

5=0. As b 1is varied from zZero, M -1« 52 3 for all points on
either surface.
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Transonic approximastion for Prandtl-Meyer flow.- The concept of

the role played by &%, the amount the free stream must be deflected to
reach sonic velocity, may be illustrated by considering Prandtl-Meyer
flow. For Prandtl-Meyer flow, in order to reach sonic velocity the
stream must be deflected through an angle &%, given approximately

by (from reference 3 with 2(M_ - 1) replaced by (M2 - 1)):

2 3/2
5% <?5Lal;i> (2)

where M, 1is the stream Mach number and C = E% (r + li]2/3, 7 Dbeing
the ratio of specific heats. The value of &% 1s taken to be positive.

Inasmuch as, for Prandtl-Meyer flow, the flow deflection may be
considered to consist of more than one deflection (fig. 2), the expression
for the local Mach number may be written:

| M .1 = cla - 5*|2/3 (3)

wvhere © 1is taken ags the flow deflection from the free-stream direction.
From equation (2), &% = 0O when M_ = 1, and, for this case, equation (3)
reduces to the transonic similarity rule. A plot of equation (3) is
shown in figure 3. It is important to note that the curve for M, > 1

is the same as the curve for M_ =1 except that the origin of the

Me > 1 curve has been shifted to the point ©&%. This result shows that,

for Prandtl-Meyer flow, the expression for M2 - 1 is of the same form
as the transonic similarity rule for a sonic stream, providing & 1is

measured from the &% direction.

Velocity-correction formula for diamond-shaped airfoil.- The
fundamental assumption made to develop a velocity-correction formula
for the diamond-shaped airfoil is that the concept of C(x) obtained
from the similarity rule for a sonic stream and the concept of &%
illustrated by Prandtl-Meyer flow may be combined in the form

M2 -1 =c(x) |s - &x[2/3 (4)

It should be emphasized that equation (4) 1s based upon an assumption
and is not claimed to be rigorous. Typical plots of equation (4) are
given in figure L.

The C(x) used for the diamond-shaped airfoil is obtained from the
solution given in reference 1 for this airfoil for M_ = 1. Thus,

(M
C(X) —(——S-é7—3——>Mw o (5)
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If the stream Mach number is greater than 1.0, the flow must be
decelerated (compressed through an angle %) to reach sonic velocity.
In the approximation of the transonic small-disturbance theory, the
compression of the flow caused by a shock wave is isentropic. Thus, to
the same order of approximation, % may be determined from either
Prandtl-Meyer flow or shock-wave relations. It can be shown that &%
computed from shock-wave relations obeys the transonic similarity rule;
that is,

(%]

M2-1_K*
5*2/3

(6)

where X* 1is a constant. Note that equation (6) is very similar to
equation (2) which is valid for Prandtl-Meyer flow. The values of &%
used in the computations were taken from shock-wave tables to insure
that the results obtained by the use of equation (4) would fair smoothly
into those given by shock-expansion theory. The angle 5*, based on
shock-wave relations, is shown as a function of M, in figure 5.

The concept of &% previously presented appears to have physical
significance only for stream Mach numbers greater than 1.0. In order
to calculate flows with a stream Mach number less than 1.0, the curve
for B®* was extrapolated by assuming that &% was an odd function

of M2 - 1.

Conditions satisfied by proposed velocity-correction formula.-

Equation (4) contains the transonic similarity rule as a special case.
Eliminating &% from equations (4) and (6) leads to the following

equation:
2 ]/)3/2 2/3
M -1 = c(x)52/3 1 _(M‘” _ (7)

S

When M_ = 1, the local MZ - 1 distribution is propertional to 62/3
as required by the transonic similarity rule. Moreover, when M_, and

()"

B are varied so that <y“ remains constant, the expression

for the local Mach number at the surface becomes

3/2
M2 - 1 = c(x)s2/3F <M°°2_6'12
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This expreseion is in agreement with the corresponding result of the
transonic similarity rule.

Equation (4) is also in accord with the result of Guderley

(reference 4) that (%%é> = 0 for all shapes having finite thickness.
Mo=1

Thus, from equation (7), at a fixed position x,

_ <C(x)>3/2h-42-° n? - 1M (8)

_
aM,, K* M|y .1

and hence

<@_> -0
WMo/ =1

The result of Guderley that <§¥;> = 0 has been used by Vincenti and
dM M,=1

Wagoner (reference 2) to obtain the result that EE%> = - 2 (?é>
Moo/ M, =1 M1

7Y+ 1

where cg 1s the drag coefficient. The method of the present paper
gives this same slope of the drag curve at M_ = 1.

e}

At a speed slightly above that for shock-wave attachment, the local
Mach number over the front half of the diamond-shaped airfoil becomes

sonic. Equation (8) gives <%%;)q =w for this condition, whereas
=1

shock-wave tables indicate that (g%_>M 1 1s extremely large but finite.
0 =

This difference between infinity and a very large quantity is of no
practical importance in the present considerations.

If the proposed velocity-correction formula is to yileld good results
throughout the speed range from M_ = 1 +to the speed for shock attach-

ment, the results should fair smoothly into those for purely supersonic
flow with attached shock waves and also into those for subsonic stream
Mach numbers. For the case of flow with attached shock waves, &% is
greater than © and the supersonic local Mach numbers may be estimated
by expandiné around a Prandtl-Meyer corner from the &% direction to
the & direction by use of equation (3) or, preferably, the exact
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expression for Prandtl-Meyer flow for the deflection &% - ®. Local
Mach number distributions were calculated by both the present method
and by the exact shock-expansion method (reference 5) for a 10-percent-
thick diamond-shaped airfoil in the Mach number range 1.28 £ M_ < 1.55.

The maximum difference in the local Mach numbers predicted by the two
methods in this speed range was less than 0.01. This agreement indicates
that the proposed velocity-correction formula not only fairs smoothly
into the attached-shock calculations but may also be used as a means

for calculating such flows with good accuracy.

The calculation for the rear half of the diamond-shaped airfoil
at subsonic speeds is beyond the scope of this paper because of the
presence of a shock wave on the rear surface. The location and strength
of this shock wave seem to be strongly influenced by viscous effects.

The general shape of the curve of drag coefficient against Mach
number calculated by means of equation (4) is very similar to the "possible
interpolated” drag-coefficient curve given in reference 2 except near
attachment Mach number.

The application of the method to the front and rear surfaces of the
airfoil are treated separately.

Application to front surface of diamond-shaped airfoil.- In the
sign convention adopted, &% 13 always positive <M°o > L). For a wedge,
the flow is subsonic if ® - 8 > 0 and supersonic if & - 8% < Q.

When the local Mach numbers are subsonic, the C(x) given by equation (5)
is used. When the local Mach numbers are supersonic, Prandtl-Meyer
concepts are employed as previously discussed.

Figure 5 shows the angle B* for sonic flow for a wedge as a
function of stream Mach number as calculated from shock-wave relations.
This curve is more accurate than that given by equation (6) since KXx*
is not quite constant. The difference between &% and the local
slope ® 1is a measure of the deviation of M2 - 1 from zero. Figure 6
shows the variation of the M2 - 1 distributions for the front half
of the airfoil with the stream Mach number. These results were obtained
by multiplying the M2 - 1 distribution for M_ = 1 (reference 1) by

\2/3
_ 8%
the factor <?_ETEL) where & 18 now considered the wedge thickness
ratio. Figure 7 presents the corresponding local Mach number distributions.
Reexamination of equation (4) indicates that the proposed velocity-

correction formula is equivalent to the assumption that the“local Mach
number distribution over the front surface of a diamond-shaped airfoil
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is the same as that for a thinner airfoil in a sonic stream; that is,
& - 3% may be considered as the effective airfoil thickness 8, 1in a

sonic stream. Figure 8 shows, for example, that a 10-percent-thick
wedge at a stream Mach number of 1.167 has the same effective thickness
as a S5-percent-thick wedge in a sonic stream. A 10-percent-thick wedge
at M, = 1.278 will have the same Mach number distribution as a flat
plate in a sonic stream; namely, M = 1.

Application to rear surface of diamond-shaped airfoil.- For all
Mach numbers below shock attachment, the local Mach number remains 1.0
Just ahead of the corner, and therefore the Prandtl-Meyer expansion at
the corner remains constant. The Mach number distribution on the rear
is considered to result from a Prandtl-Meyer expansion and the reflected
compression waves from the sonic line. A sketch 1llustrating this
influence on the rear surface is given as figure 9. The subsonic
influence (due to reflected compression waves from the sonic line) must
decrease to zero when the local Mach number on the front becomee sonic.
The subsonic influence on the rear is assumed to vary with stream Mach
number in the same manner as the subsonic flow over the front and C(x)
for the rear is proportional to

(M2 _ l)PM - (M2 - l)Moo =1

where (M2 - l)PM corresponds to the Mach number obtained by a Prandtl-

Meyer expansion through an angle 2. In other words, the subsonic
influence on the rear for M, =1 given in reference 1 is multiplied

2/3 :
*
by the factor <——éf§L> to obtain the subsonic influence at other

Mach numbers. The corresponding M2 -1 and M distributions are
shown in figures 6 and 7, respectively.

Figure 10 gives the pressure distributions, based upon the exact
formula for the pressure coefficient, corresponding to the Mach number
distributions (0.8;5 M, < 1.3) of figure 7. Note that the pressure-
distribution curves form a confused pattern, whereas the Mach number
distribution curves are more uniform. This behavior indicates that
studlies of transonic flow phenomena should be interpreted in terms. of
Mach number rather than pressure coefficient.

Figure 11 presents a comparison of the Mach number distributions
calculated by the present method with those calculated in reference 2 for
a 10-percent-thick diamond-shaped airfoil. The Mach number distributions
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obtained in reference 2 are presented as two curves. This choice arose
in reference 2 because there was some question whether M2 - 1 should
be replaced by 2(M - 1). For the 10-percent-thick diamond-shaped.
airfoll, the Mach number is known to be exactly 1.0 Jjust ahead of the
corner and 1.485 just after the Prandtl-Meyer expansion at the corner
for inviscid flow.

Drag coefficient.- Figure 12 shows the variation of drag coefficient
with stream Mach number for the 1O-percent-thick diamond-shaped airfoil.
Separate curves are presented for the front and rear surfaces in order
to emphasize the change in relative importance of the drag contributed
by the two parts as the Mach number varies. An attempt has been made to
reproduce faithfully the peculiarities and breaks in the curve, especially
as the local Mach number on the front surface becomes sonic. The
present results fair smoothly intoc the exact supersonic results; in
fact, the supersonic results can be obtained to & high degree of accuracy
by the present method.

Figure 13 presents a comparison of the drag curve given by the
proposed method with the "possible interpolated curve" of reference 2
for a 7.87-percent-thick diamond-shaped airfoil. The "boxes" shown
in figure 13 represent the choice of drag coefficients which are due to
the choice of pressure coefficients and stream Mach numbers presented
in reference 2. The two curves are very similar except near attachment
Mach number. Reference 2 shows a fairly small slope for the drag curve
in this region, whereas shock-expansion theory and the present method
indicate that this slope becomes extremely large.

By use of the present concepts an explicit expression may be derived
for the drag coefficient of a diamond-shaped airfoil for M, = 1. The
drag coefficient may be expressed in terms of the airfoil thickness
ratio & and average pressure coefficient P as follows:

Cqg = 6(Pfront - Prear)

Except in the equations to follow, the exact pressure relations have
been used throughout this paper. If the exact expression for the pressure
coefficient were used in the analysis to follow, the formula obtained

for the drag coefficient would yield the drag curve shown in figure 12.
However, for the sake of simplicity, the following approximate relation

obtained from Bernoulli's equation and limited to Mach numbers in the
neighborhood of unity is used:

-
)

2 2 2
Px - M= - 1) -« (M -1
Yy + 1 ( ) (

L
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Then
con 22 l0@ J 1) - Tn(e - 5923 1 Gx)p(s - )23
d~ 5y %1 PM R F J
- M2 -1
where C(x)F = ——= for the front surface at M, = 1 and
52/3 ‘
(M2 - 1), - (M2 - 1)p '
EKX)R = for the rear surface at My, =
52/3

7y + 1
2

C(x)F and C(x)R in terms of the drag coefficient for M_= 1 leads
to the following approximate expression for the drag coefficient

o - \3/2|2/3
a3 32/3 4 e 207/35%/3 1 1<M.-__—°° - l> (9)

2/3 |
For Prandtl-Meyer flow, M - 1= (3 e> , and replacing

- ————————t— - —

Ca =
: (r + 1)1/3 % (7 + 1)1/3 °

where cdo is the drag coefficient for M_ = 1.

Equation (9) is not sufficiently accurate for genéral use because
of the rather severe limitations of the approximate pressure formula
but is useful for illustrating the variation of drag coefficient with
gtream Mach number.

¢ .

Equation (9) separates the drag coefficient for a diamond- shaped
airfoil into two terms: (1) a supersonic term contributed by the Prandtl-
Meyer corner which remains constant and (2) a subsonic term which -
decreases to zero in the vicinity of shock-attachment Mach number.

At stream Mach numbers less than 1.0, the drag contributed by the
supersonic term 1s no longer constant but is decreased because a shoask
wave moves forward along the rear surface. This forward movement
decreases the extent of the supersonic region whichiis gradually replaced
by the symmetrical subsonic pressure distribution. The existence of a
shock wave on the rear surface at these speeds makes the calculation of
the pressure distribution very difficult since the location of the shock
wave 1s strongly affected by boundary-layer separation. For this reason,
the total drag coefficients in the subsonic range are not presented.
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CONCLUDING REMARKS

A velocity-correction formula has been proposed for the purpose of
calculating, from the known Mach number distribution for a diamond-
shaped airfoil at a stream Mach number of 1.0, Mach number distributions

on the same alrfoil at speeds from a Mach number of about 0.8 to sh?ck-
attachment Mach number. The formula exhibits the following properties:

(1) The formula contains the general transonic similarity rule as
well as the special form for a sonic stream.

(2) The local Mach number over the front surface of the airfoil
is 1.0 at the correct stream Mach number.

(3) The drag coefficient is that given by Guderley and Yoshihara
when M = 1. '

(4) The rate of change of drag coefficient with stream Mach number
at M_ =1 1is the same as that given by Vincenti and Wagoner.

(5) Calculated Mach number distributions are in agreement with
calculations based on shock-expansion theory above shock-wave attachment

Mach numbers.
(6) The formula reduces to the proper form for Prandtl-Meyer flow.

Pressure and Mach number distributions for a 1lO0-percent-thick
diamond-shaped airfoil are DPresented for the Mach number range
0.8 €M, £1.3. The variation of local Mach number distribution with

stream Mach number is regular, whereas the pressure-distribution curves
form s confused pattern. This behavior indicates that studies of
transonic flow phenomena should be interpreted in terms of Mach number
rather than pressure coefficient.

By the use of the velocity-correction formuls proposed in the present
paper, an approximate expression is derived for the drag coefficient
of a diamond-shaped airfoil as g function of stream Mach number and
thickness ratio. The drag coefficient is separated into two terms: (1) a
supersonic term contributed by the Prandtl-Meyer corner and (2) a subsonic
term which decreases to zero in the vicinity of attachment Mach number.

In its present form, the proposed velocity-correction formula
appears to be applicable only to diamond-shaped airfoils at transonic
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speeds and will probably require modification if it is to be applied
to curved airfoils. Presumably, the present concepts may be used to
obtain corresponding relations for a cone.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Langley Field, Va., August 15, 1951
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APPENDIX

W

DERIVATION OF TRANSONIC SIMILARITY RULE FOR A SONIC STREAM

The results presented in reference 3 have shown that, when a
perturbation velocity potential ¢ is defined by

u

a* + P

(A1)
v =y

where =a* 1is the velocity of sound for M =1, and x and Yy are
Cartesian coordinates the transonic approximation to the differential
equation for the flow of a compressible fluid may be written as

7 + 1
a¥

¢x ¢xx - ¢yy =0 | (A2)

In addition, when 2(M - 1) is replaced by M2 - 1,

Yy + 1

= =M -1 (A3)

Also, from reference 3, the appropriate boundary conditions for

equation (2) when the stream is sonic are ’
By(x,0) _ gp(x (a%)
a¥ &

and at Infinity

Bx = ¢y =0 (A5)

where © denotes the airfoil thickness ratio, c¢ 1s the chord, and h
i8 a function describing the body shape.

A solution @1(x1, y1) of equations (A2), (A4), and (A5) is assumed

to be known. Two flows are considered to be similar if a solution
$o(xp, yo) satisfying equations similar to (A2), (AL), and (A5) can be
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related to ¢1. In particular, similarity will exist providing A, B, C
can be 80 determined that

¢2 = A¢1
X, = Bxy ' (a6)
Yo = OV

if, in addition and both satisfy equation (A2), and
D) s 1 2 ?

-~

fr, (x1, 0) = ath%)

‘ > (AT)
Foy,(x2, 0) = 62h<§—§>

and at infinity

= = = =0
¢1Y1 ¢1x1 ¢2y2 ¢2x2

With full generality, cll may be taken equal to co ‘since

both bodies are in the flow field which extends infinitely far in every
direction. If c¢j = c,, then B = 1. Flows involving different values

of 7 need not be considered in this analysis, which is primarily
concerned with the result for a particular gas - namely, air.

If both ¢l and ¢2 are to satisfy equation (A2), it is easily
found that '

AC2 =1 (A8)

From equations (A6) and (AT)
C C
¢1yl(x,0) = 51h<§) =z ¢2y2(x,0) =% 52hG§>

from which

(A9)

E 1o
[0/
n
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From equations (A8) and (A9),

1/3
¢ = <6_1> (A10)

A= <§§>2/3_ (A11)

¢2x(x,0) = 78.‘: T @22 - l> = A¢lx(x,0) = A '-)-'—%;.-—l <M12 - ]> (AlE)

From equation (A3)

and, from equations (All) and (Al2),

My
Mo2 - 1 = 5,23

Y,
8,/ 3

2 .1

Inasmuch as ¢1 was agsumed to be the known solution, the value

M2 -1
of -¥L?;——— at the surface may be replaced by C(x), a known function,
L
and the transonic similarity rule for a sonic stream yields the result
that, on the surface,

M2 - 1= 82/3 o(x) (A13)
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Figure 3.- Prandtl-Meyer flow plotted to illustrate role of &*.

2 3/2
M - 1=Cls - 5*|2/3; &% .___<_I‘E°';6:__l> .

.
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Increasing C(x)

Figure 4.- Illustration of proposed velocity-correction formula showing

combination of concepts of C(x) and &%, M2 -1 = C(x)l& - 6*‘2/3;

2
&% = <—M°°2 - l>3/ .
C
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Figure 8.- Illustration of method of calculation.
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Figure 9.- Subsonic influence on rear half of diamond-shaped airfoil.
M, = 1.
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